Alumina 99.9% (Hipped)

CHEMICAL COMPOSITION
<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>99.9%wt</td>
</tr>
<tr>
<td>MgO</td>
<td>0.05%wt</td>
</tr>
<tr>
<td>Na₂O</td>
<td><25 ppm</td>
</tr>
<tr>
<td>SiO₂</td>
<td><25 ppm</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td><25 ppm</td>
</tr>
<tr>
<td>CaO</td>
<td><25 ppm</td>
</tr>
</tbody>
</table>

* by difference

PHYSICAL PROPERTIES
- Mean grain size: 3 ± 1 µm
- Sintered density: 3.97 g/cm³
- Bending strength at 20°C: 550 MPa
- Hardness Hᵥ₀.₅: 1900 Hv

THERMAL PROPERTIES
- Thermal conductivity at 20°C: 30 W.m⁻¹.k⁻¹

ELECTRICAL PROPERTIES
- Dielectric constant at 25°C-1MHz: 9 (1MHz)
- tan δ: 5.10⁻³ (9GHz)
- DC Volume resistivity at 25°C: 5.10¹⁴ Ω.cm
- Dielectric strength at 3mm: 19 kV/mm⁻¹

MICROSTRUCTURE

KEY FEATURES
Superior mechanical strength and hardness
Biocompatible
Smooth surfaces

TYPICAL APPLICATIONS
High purity alumina is usually well suited for applications such as pistons and cylinders for precision dosing devices, feedthrough for medical devices, precision rotor valves components, pump seals & plungers, electrical insulators & inductors, wear nozzles, electrical connector housings, injector tubes & gas nozzles, wear resistant components.
The hot isostatic pressing or HIP process increases the general mechanical resistance through diminishing the remaining porosity.